organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,5'-Dimethyl-N,N'-(iminodiethylene)bis(1*H*-pyrazole-3-carboxamide)

Jing Hu,^a* Guofeng Chen,^{a,b} Guochun Ma^a and Hongguang Song^a

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^bDepartment of Chemistry, Hebei University, Baoding 071002, People's Republic of China

Correspondence e-mail: hujing8012@yahoo.com.cn

Received 13 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.117; data-to-parameter ratio = 15.7.

The title compound, C₁₄H₂₁N₇O₂, was synthesized from methyl 5-methylpyrazole-3-carboxylate and diethylenetriamine without solvent. Each molecule in the crystal structure interacts with five neighbouring molecules through intermolecular N-H···N and N-H···O hydrogen bonds, to form a two-dimensional layer network.

Related literature

For related literature, see: Mohamed et al. (2007); Won et al. (2007).

Experimental

Crystal data

$C_{14}H_{21}N_7O_2$	
$M_r = 319.38$	
Monoclinic, C2/a	;
a = 37.091 (6) Å	
b = 7.5543 (12) Å	1

c = 11.6123 (18) Å $\beta = 99.874 \ (2)^{\circ}$ V = 3205.5 (9) Å³ Z = 8Mo Ka radiation

```
\mu = 0.09 \text{ mm}^{-1}
T = 294 (2) K
```

Data collection

Bruker SMART CCD area-detector	8706 measured reflections
diffractometer	3303 independent reflections
Absorption correction: multi-scan	2386 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.029$
$T_{\min} = 0.976, T_{\max} = 0.987$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	210 parameters
$wR(F^2) = 0.117$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3}$
3303 reflections	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.26 \times 0.24 \times 0.14 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots N4^{i}$	0.86	2.06	2.9005 (19)	166
$N3 - H3 \cdot \cdot \cdot N2^{i}$	0.86	2.22	3.0247 (19)	156
$N4-H4A\cdotsO1^{ii}$	0.91	2.63	3.367 (2)	139
$N5-H5\cdots O1^{iii}$	0.86	2.22	2.8481 (18)	130
$N7 - H7 \cdots O2^{iv}$	0.86	2.00	2.8535 (19)	170
Symmetry codes: (i) $-x, y, -z + \frac{3}{2};$	(ii) $x, -y$	$, z + \frac{1}{2};$ (iii) $x, -y$	$+1, z + \frac{1}{2};$ (iv)

 $x, -y+2, z+\frac{1}{2}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2491).

References

- Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Mohamed, A. A., Burini, A., Galassi, R., Paglialunga, D., Galan-Mascaros, J.-R., Dunbar, K. R. & Fackler, J. P. Jr (2007). Inorg. Chem. 46, 2348-2349.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.
- Won, T.-J., Clegg, J. K., Lindoy, L. F. & McMurtrie, J. C. (2007). Cryst. Growth Des. 7, 972-979.

supplementary materials

Acta Cryst. (2007). E63, o4806 [doi:10.1107/S1600536807059387]

5,5'-Dimethyl-*N*,*N*'-(iminodiethylene)bis(1*H*-pyrazole-3-carboxamide)

J. Hu, G. Chen, G. Ma and H. Song

Comment

In recent years, the pyrazole derivatives have appealed much attention by their structures and coordination (Mohamed *et al.*, 2007 and Won *et al.*,2007) properties. We report here the crystal structure of N1, N5-bis-(5-methyl-1*H*-pyrazole-3-carbonyl)diethylenetriamine in order to elucidate its molecular conformation.

In the molecule of the title compound, (I), (Fig. 1), the structure consists of two pyrazole rings with a dihedral angle of 66.6 (2) °. As can be seen from the packing diagram (Fig 2), there exists N—H…N and N—H…O intermolecular hydrogen bonds, which link the molecules into a two-dimensional layer networks parallel to the crystallographic *ac* plane.

Experimental

5-Methyl pyrazole-3-carboxylic acid methyl ester (1 g, 7.1 mmol) was dissolved in diethylenetriamine (360.5 mg, 3.5 mmol) and heated at 373 K under nitrogen for 4 h. After cooling to room temperature the crude product was washed with methanol and dried *in vacuo* to yield N1,N5-bis-(5-methyl-1*H*- pyrazole-3-carbonyl)diethylenetriamine as a white powder The compound was crystallized by slow evaporation of the methanol solution in 7 d. (yield; 904 mg, 81%, m.p. 484 (5) K).

Refinement

All H atoms were positioned geometrically and refined as riding [C—H = 0.96-0.98Å and N—H = 0.86Å], with a displacement parameter U_{iso} set equal to 1.2 (CH, NH and CH₂) or 1.5 (CH₃) times U_{iso} of the parent atom.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. The packing of (I), showing the two-dimensional hydrogen-bonded layer. Dashed lines indicate hydrogen bonds.

5,5'-Dimethyl-N,N'-(iminodiethylene)di-1H-pyrazole-3-carboxamide

Crystal data C₁₄H₂₁N₇O₂

 $F_{000} = 1360$

$M_r = 319.38$	$D_{\rm x} = 1.324 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Melting point: 484(5) K
Hall symbol: -C 2yc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 37.091 (6) Å	Cell parameters from 3176 reflections
b = 7.5543 (12) Å	$\theta = 2.8 - 26.4^{\circ}$
c = 11.6123 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 99.874 \ (2)^{\circ}$	T = 294 (2) K
$V = 3205.5 (9) \text{ Å}^3$	Prism, colourless
<i>Z</i> = 8	$0.26 \times 0.24 \times 0.14 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3303 independent reflections
Radiation source: fine-focus sealed tube	2386 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -44 \rightarrow 46$
$T_{\min} = 0.976, \ T_{\max} = 0.987$	$k = -9 \rightarrow 6$
8706 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 1.278P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\text{max}} = 0.003$
3303 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
210 parameters	$\Delta \rho_{\rm min} = -0.23 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.08168 (3)	0.13264 (19)	0.55742 (10)	0.0495 (4)
O2	0.18691 (3)	0.71700 (17)	0.87177 (10)	0.0463 (3)
N1	-0.03681 (4)	0.26049 (19)	0.52806 (12)	0.0380 (3)
H1	-0.0590	0.2715	0.5398	0.046*
N2	-0.00997 (4)	0.1880 (2)	0.60646 (11)	0.0367 (3)
N3	0.05988 (3)	0.08529 (18)	0.72415 (11)	0.0350 (3)
Н3	0.0415	0.0909	0.7602	0.042*
N4	0.11299 (4)	0.23640 (18)	0.94525 (12)	0.0355 (3)
H4A	0.1168	0.1454	0.9966	0.043*
N5	0.14426 (4)	0.70679 (19)	0.98940 (12)	0.0397 (4)
Н5	0.1364	0.7552	1.0475	0.048*
N6	0.17739 (4)	0.98883 (19)	1.11651 (12)	0.0389 (3)
N7	0.20363 (4)	1.09440 (19)	1.17462 (12)	0.0407 (4)
H7	0.2004	1.1607	1.2322	0.049*
C1	-0.05128 (5)	0.3985 (3)	0.33162 (15)	0.0480 (5)
H1A	-0.0628	0.3085	0.2795	0.072*
H1B	-0.0380	0.4776	0.2897	0.072*
H1C	-0.0696	0.4635	0.3629	0.072*
C2	-0.02556 (5)	0.3141 (2)	0.42924 (14)	0.0361 (4)
C3	0.01084 (5)	0.2744 (2)	0.44409 (14)	0.0391 (4)
H3A	0.0267	0.2944	0.3914	0.047*
C4	0.01941 (4)	0.1978 (2)	0.55471 (13)	0.0328 (4)
C5	0.05602 (4)	0.1350 (2)	0.61240 (14)	0.0333 (4)
C6	0.09507 (4)	0.0216 (2)	0.78541 (15)	0.0379 (4)
H6A	0.1064	-0.0495	0.7319	0.045*
H6B	0.0909	-0.0546	0.8491	0.045*
C7	0.12142 (4)	0.1679 (2)	0.83466 (15)	0.0376 (4)
H7A	0.1462	0.1223	0.8474	0.045*
H7B	0.1200	0.2637	0.7784	0.045*
C8	0.13643 (4)	0.3846 (2)	0.99312 (15)	0.0386 (4)
H8A	0.1615	0.3602	0.9840	0.046*
H8B	0.1359	0.3958	1.0760	0.046*
C9	0.12403 (4)	0.5582 (2)	0.93204 (15)	0.0406 (4)
H9A	0.1276	0.5526	0.8513	0.049*
H9B	0.0981	0.5751	0.9323	0.049*
C10	0.17441 (4)	0.7729 (2)	0.95714 (14)	0.0330 (4)
C11	0.19332 (4)	0.9133 (2)	1.03436 (14)	0.0335 (4)
C12	0.22949 (5)	0.9704 (2)	1.04128 (15)	0.0417 (4)
H12	0.2460	0.9368	0.9933	0.050*
C13	0.23555 (5)	1.0858 (2)	1.13336 (16)	0.0425 (4)
C14	0.26925 (6)	1.1819 (3)	1.1904 (2)	0.0675 (6)
H14A	0.2665	1.2164	1.2680	0.101*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supplementary materials

H14B	0.2727	1.2854	1.1455	0.101*
H14C	0.2901	1.1055	1.1942	0.101*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0330 (6)	0.0744 (10)	0.0444 (7)	-0.0001 (6)	0.0162 (5)	0.0015 (6)
02	0.0492 (7)	0.0510 (8)	0.0423 (7)	-0.0020 (6)	0.0177 (6)	-0.0070 (6)
N1	0.0286 (7)	0.0476 (9)	0.0378 (7)	0.0020 (6)	0.0061 (6)	0.0018 (6)
N2	0.0302 (7)	0.0462 (8)	0.0340 (7)	0.0004 (6)	0.0067 (6)	0.0030 (6)
N3	0.0301 (7)	0.0426 (8)	0.0335 (7)	-0.0002 (6)	0.0085 (6)	-0.0012 (6)
N4	0.0335 (7)	0.0366 (8)	0.0364 (7)	-0.0026 (6)	0.0055 (6)	0.0011 (6)
N5	0.0354 (7)	0.0413 (8)	0.0445 (8)	-0.0044 (6)	0.0125 (6)	-0.0083 (7)
N6	0.0344 (7)	0.0412 (8)	0.0414 (8)	0.0000 (6)	0.0072 (6)	-0.0029 (7)
N7	0.0447 (8)	0.0378 (8)	0.0400 (8)	-0.0014 (7)	0.0081 (6)	-0.0063 (6)
C1	0.0536 (11)	0.0485 (11)	0.0392 (9)	0.0024 (9)	0.0002 (8)	0.0021 (9)
C2	0.0418 (9)	0.0344 (9)	0.0321 (8)	-0.0040 (7)	0.0065 (7)	-0.0033 (7)
C3	0.0386 (9)	0.0475 (10)	0.0333 (9)	-0.0041 (8)	0.0121 (7)	0.0012 (8)
C4	0.0332 (8)	0.0349 (9)	0.0313 (8)	-0.0052 (7)	0.0082 (7)	-0.0037 (7)
C5	0.0297 (8)	0.0361 (9)	0.0353 (9)	-0.0038 (7)	0.0091 (7)	-0.0049 (7)
C6	0.0370 (9)	0.0355 (9)	0.0403 (9)	0.0035 (7)	0.0042 (7)	-0.0024 (7)
C7	0.0304 (8)	0.0429 (10)	0.0397 (9)	0.0007 (7)	0.0072 (7)	-0.0007 (8)
C8	0.0308 (8)	0.0439 (10)	0.0391 (9)	-0.0019 (7)	0.0003 (7)	-0.0006 (8)
C9	0.0330 (8)	0.0409 (10)	0.0459 (10)	-0.0035 (8)	0.0004 (7)	-0.0025 (8)
C10	0.0313 (8)	0.0330 (9)	0.0340 (8)	0.0046 (7)	0.0037 (7)	0.0028 (7)
C11	0.0340 (8)	0.0321 (8)	0.0342 (8)	0.0021 (7)	0.0056 (7)	0.0043 (7)
C12	0.0369 (9)	0.0427 (10)	0.0483 (10)	-0.0046 (8)	0.0153 (8)	-0.0055 (8)
C13	0.0404 (9)	0.0389 (10)	0.0487 (10)	-0.0053 (8)	0.0093 (8)	-0.0022 (8)
C14	0.0577 (13)	0.0657 (14)	0.0792 (15)	-0.0218 (12)	0.0119 (11)	-0.0239 (12)

Geometric parameters (Å, °)

O1—C5	1.2337 (18)	C2—C3	1.365 (2)
O2—C10	1.2386 (19)	C3—C4	1.395 (2)
N1—N2	1.3450 (19)	С3—НЗА	0.9300
N1—C2	1.349 (2)	C4—C5	1.485 (2)
N1—H1	0.8600	C6—C7	1.521 (2)
N2—C4	1.3335 (19)	С6—Н6А	0.9700
N3—C5	1.335 (2)	С6—Н6В	0.9700
N3—C6	1.457 (2)	С7—Н7А	0.9700
N3—H3	0.8600	С7—Н7В	0.9700
N4—C8	1.467 (2)	C8—C9	1.524 (2)
N4—C7	1.467 (2)	C8—H8A	0.9700
N4—H4A	0.9053	С8—Н8В	0.9700
N5—C10	1.336 (2)	С9—Н9А	0.9700
N5—C9	1.447 (2)	С9—Н9В	0.9700
N5—H5	0.8600	C10-C11	1.485 (2)
N6—C11	1.333 (2)	C11—C12	1.398 (2)
N6—N7	1.3466 (19)	C12—C13	1.368 (2)

N7—C13	1.353 (2)	C12—H12	0.9300
N7—H7	0.8600	C13—C14	1.498 (3)
C1—C2	1.493 (2)	C14—H14A	0.9600
C1—H1A	0.9600	C14—H14B	0.9600
C1—H1B	0.9600	C14—H14C	0.9600
C1—H1C	0.9600		
N2—N1—C2	113.38 (13)	С7—С6—Н6В	108.7
N2—N1—H1	123.3	H6A—C6—H6B	107.6
C2—N1—H1	123.3	N4—C7—C6	111.46 (13)
C4—N2—N1	103.88 (13)	N4—C7—H7A	109.3
C5—N3—C6	120.37 (13)	С6—С7—Н7А	109.3
C5—N3—H3	119.8	N4—C7—H7B	109.3
C6—N3—H3	119.8	С6—С7—Н7В	109.3
C8—N4—C7	113.54 (13)	H7A—C7—H7B	108.0
C8—N4—H4A	108.3	N4—C8—C9	111.61 (13)
C7—N4—H4A	106.0	N4—C8—H8A	109.3
C10—N5—C9	123.63 (14)	С9—С8—Н8А	109.3
C10—N5—H5	118.2	N4—C8—H8B	109.3
C9—N5—H5	118.2	C9—C8—H8B	109.3
C11N6N7	103 93 (13)	H8A = C8 = H8B	108.0
N6-N7-C13	113 29 (14)	N5-C9-C8	111 22 (13)
N6—N7—H7	123.4	N5-C9-H9A	109.4
C13N7H7	123.1	$C_8 = C_9 = H_9 \Delta$	109.1
$C_2 - C_1 - H_1 \Delta$	109.5	N5_C9_H9B	109.4
$C_2 C_1 H_1 R$	109.5	C_{8} C_{9} $H_{9}B$	109.4
	109.5		109.4
$C_2 = C_1 = H_1 C_2$	109.5	$\frac{10}{10} = \frac{10}{10} = 10$	100.0 122.00(15)
	109.5	02 - 010 - 011	122.90(15)
	109.5	N5 C10 C11	121.01(13)
HIB-CI-HIC	109.5	N5-C10-C11	113.43 (14)
N1 = C2 = C3	103.07(13) 121.56(15)	N6-C11-C12	111.40(13)
NI = C2 = C1	121.30(13)	10 - 11 - 10	121.00(14)
$C_{3} = C_{2} = C_{1}$	152.77(10)	$C_{12} = C_{11} = C_{10}$	127.13(13)
$C_2 = C_3 = C_4$	105.77 (14)		105.59 (15)
C2—C3—H3A	127.1	C13-C12-H12	127.2
C4—C3—H3A	127.1	CII—CI2—HI2	127.2
N2 - C4 - C3	111.28 (14)	N7	105.71 (15)
$N_2 = C_4 = C_5$	122.26 (14)	N/-C13-C14	122.33 (16)
C3-C4-C5	126.45 (14)	C12C13C14	131.86 (17)
01—C5—N3	122.36 (15)	CI3-CI4-HI4A	109.5
01	119.87 (14)	С13—С14—Н14В	109.5
N3—C5—C4	117.76 (13)	H14A—C14—H14B	109.5
N3—C6—C7	114.05 (14)	C13—C14—H14C	109.5
N3—C6—H6A	108.7	H14A—C14—H14C	109.5
С7—С6—Н6А	108.7	H14B—C14—H14C	109.5
N3—C6—H6B	108.7		
C2—N1—N2—C4	0.38 (18)	N3—C6—C7—N4	80.13 (17)
C11—N6—N7—C13	-1.02 (19)	C7—N4—C8—C9	79.30 (18)
N2—N1—C2—C3	-0.06 (19)	C10—N5—C9—C8	93.81 (19)

supplementary materials

N2—N1—C2—C1	-179.83 (15)	N4—C8—C9—N5	172.62 (13)
N1—C2—C3—C4	-0.28 (19)	C9—N5—C10—O2	3.0 (3)
C1—C2—C3—C4	179.45 (18)	C9—N5—C10—C11	-173.98 (14)
N1—N2—C4—C3	-0.56 (18)	N7—N6—C11—C12	0.38 (18)
N1—N2—C4—C5	178.69 (14)	N7-N6-C11-C10	174.30 (14)
C2—C3—C4—N2	0.5 (2)	O2-C10-C11-N6	171.16 (15)
C2—C3—C4—C5	-178.67 (15)	N5-C10-C11-N6	-11.8 (2)
C6—N3—C5—O1	-1.4 (2)	O2-C10-C11-C12	-15.9 (3)
C6—N3—C5—C4	179.66 (14)	N5-C10-C11-C12	161.11 (17)
N2-C4-C5-O1	173.78 (15)	N6-C11-C12-C13	0.4 (2)
C3—C4—C5—O1	-7.1 (3)	C10-C11-C12-C13	-173.10 (16)
N2—C4—C5—N3	-7.2 (2)	N6—N7—C13—C12	1.3 (2)
C3—C4—C5—N3	171.91 (16)	N6—N7—C13—C14	-175.42 (18)
C5—N3—C6—C7	83.43 (18)	C11—C12—C13—N7	-0.93 (19)
C8—N4—C7—C6	-176.87 (13)	C11—C12—C13—C14	175.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
N1—H1…N4 ⁱ	0.86	2.06	2.9005 (19)	166
N3—H3···N2 ⁱ	0.86	2.22	3.0247 (19)	156
N4—H4A…O1 ⁱⁱ	0.91	2.63	3.367 (2)	139
N5—H5···O1 ⁱⁱⁱ	0.86	2.22	2.8481 (18)	130
N7—H7····O2 ^{iv}	0.86	2.00	2.8535 (19)	170

Symmetry codes: (i) -*x*, *y*, -*z*+3/2; (ii) *x*, -*y*, *z*+1/2; (iii) *x*, -*y*+1, *z*+1/2; (iv) *x*, -*y*+2, *z*+1/2.

